

Controller Structure Overview – Report

In this Laravel project, the controller directory is structured to separate application
concerns by user role and functionality scope. While the organization follows a
logical separation, several areas require refactoring for maintainability, consistency,
and adherence to Laravel best practices. Below is a detailed explanation of each
section:

Api/

This is the primary controller namespace for all application logic accessed via API
routes (typically routes/api.php). Controllers here manage data processing,
business logic, and service-layer interaction for various modules of the system.

Purpose: Serves as the root namespace for all API-related controllers.

Observation: In the current codebase, this folder may be overloaded with logic that
should be delegated to Services or Jobs. It might also contain duplicate logic that
appears in other folders (e.g., Client/, Front/).

Improvement Areas:

- Apply thin controllers, fat services principle.

- Use Form Requests for validation instead of inline $request->validate().

- Consider breaking large controllers into feature-specific subfolders (e.g.,
Api/Orders/OrderController.php).

Auth/

This folder contains authentication and authorization-related controllers. Typical
examples include:

- LoginController

- RegisterController

- ForgotPasswordController

- ResetPasswordController

- VerificationController

Purpose: Handle user authentication flows for both API and possibly frontend.

Observation:

- Some logic may be outdated or tightly coupled with session/auth
guard logic.

- Token management (e.g., Sanctum, Passport) should be clearly
separated.

Improvement Areas:

- Clean up legacy or unused methods.

- Align with Laravel's built-in Fortify or Sanctum features for better
security and clarity.

- Use dedicated Request classes for login/register validations.

Front/

This section is intended for controllers that handle public/guest-facing features,
typically for unauthenticated users or marketing-facing views.

Purpose: Serve routes like product categories, home page content, etc.

Typical Controllers:

- HomeController

- LandingPageController

- GuestProductController

Observation:

- Often mixes presentation logic with data logic.

- May duplicate logic found in Api/ or Client/ when not well-
separated.

Improvement Areas:

- Ensure guest routes do not expose sensitive or internal data.

- Move view-related data into View Models or Transformers.

- Standardize response structures (especially if returning JSON vs.
Blade views).

Client/

Controllers here serve authenticated customers (registered users), providing
endpoints for profile management, orders, payments, etc.

Purpose: Focused on end-user functionality, behind authentication guards.

Typical Controllers:

- ProfileController

- OrderController

- WishlistController

- NotificationController

Observation:

- This section may include tightly-coupled logic with models.

- Some methods grow too large (100+ lines), indicating a need for
refactoring.

Improvement Areas:

- Shift business logic to Service classes.

- Enforce authorization via Laravel Policies.

- Improve modularity by extracting file uploads, data exports, and API
responses.

Common/

This is a utility or shared controller directory, often used for logic that’s reused
across multiple user roles (guests, clients, admins).

Purpose: Hosts reusable functionality such as:

- LocationController (cities, countries)

- SettingController

- NotificationController (shared between Client and Admin)

Observation:

- Code duplication can be high if common logic is still partially
duplicated across Client/ or Api/.

- Some "common" logic may better fit into a Service, Trait, or even a
Helper class.

Improvement Areas:

- Move non-controller logic into reusable services.

- Use proper naming conventions and RESTful method definitions.

- Consider centralizing logic in modules, not just folders.

General Recommendations for the Controller

Layer

Problem Solution

Large, multi-purpose

controllers

Split by concern, use services and

repositories

Inline validation Use dedicated Form Request classes

Duplicate logic
Refactor into shared services, traits,

or actions

Poor naming conventions
Follow RESTful conventions: index,

store, update

Mixed role responsibilities
Enforce middleware and guard checks

consistently

Problem Solution

No consistent structure Consider domain-based folder structure

Summary

The current Laravel controller structure follows a good base principle (by user role
and concern) but contains code quality, maintainability, and scalability issues.
Refactoring towards clean controller patterns, introducing services and repositories,
and modularizing features will drastically improve the architecture and developer
experience.

	Controller Structure Overview – Report
	Api/
	Front/
	Client/
	Common/

	General Recommendations for the Controller Layer
	Summary

